Real Time Hand Gesture Recognition Based on Artificial Feed Forward Neural Networks and EMG

1. どんなもの?

3層ニューラルネットワークで5つのジェスチャーを90.1%の精度でresponse速度11msで分類している.
また,ウィンドウサイズ500点でスライドウィンドウが10点であり,整流化のち5次のバターワースフィルタを用いてエンベロープで平滑化したあとに,筋収縮に対応する点をセグメント化している.特徴量抽出はDTWを利用しており,分類では条件付き確立で0.5の閾値を取らなければrestと判断する手法が取られている.
またこの手法の利点として,トレーニングデータが30個であるため,学習コストが非常に少ないといったことがあげられる. 今後の手法としてRNNを用いた分類モジュールを提案している.

EMG signal (red line) and its envelope (black line).
Confusuion matrix of the proposed model
Results of different recognition models

筋収縮に対応する領域をセグメント化した手法を用いている論文
Real-time hand gesture recognition using the Myo armband and muscle activity detection

論文情報・リンク